Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10804-10813, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517000

RESUMO

Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The pKa value of the dyes increases proportionally with decreasing Hammett parameter of p-phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p-phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (<1 ps, ∼3 ps, ∼13 ps, and ∼200 ps) exhibiting faster excited-state dynamics than observed in the unprotonated forms (for 1-3: 0.7-1.5 ps, ∼3-4 ps, 20-40 ps, 20-300 min; for 4: 0.7 ps, 4.8 ps, 17.8 ps, 40 ps, 8 min). Time-dependent density functional theory (TDDFT) elucidates the reason for the loss of isomerization in the protonated dyes, revealing a significant change in the lowest excited state potential energy nature and landscape upon protonation. Protonation impedes relaxation along the typical rotational and inversion isomerization axes, locking the dyes into a trans-configuration that rapidly decays back to the ground state.

2.
J Vis Exp ; (204)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436362

RESUMO

Transient absorption (TA) spectroscopy is a powerful time-resolved spectroscopic method used to track the evolution of excited-state processes through changes in the system's absorption spectrum. Early implementations of TA were confined to specialized laboratories, but the evolution of commercial turn-key systems has made the technique increasingly available to research groups across the world. Modern TA systems are capable of producing large datasets with high energetic and temporal resolution that are rich in photophysical information. However, processing, fitting, and interpreting TA spectra can be challenging due to the large number of excited-state features and instrumental artifacts. Many factors must be carefully considered when collecting, processing, and fitting TA data in order to reduce uncertainty over which model or set of fitting parameters best describes the data. The goal of data preparation and fitting is to reduce as many of these extraneous factors while preserving the data for analysis. In this method, beginners are provided with a protocol for processing and preparing TA data as well as a brief introduction to selected fitting procedures and models, specifically single wavelength fitting and global lifetime analysis. Commentary on a number of commonly encountered data preparation challenges and methods of addressing them is provided, followed by a discussion of the challenges and limitations of these simple fitting methods.


Assuntos
Artefatos , Laboratórios , Incerteza
3.
J Phys Chem A ; 128(4): 785-791, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236752

RESUMO

Acidic azo dyes are widely used for their vibrant colors. However, if their photophysics were better understood and controllable, they could be integrated into many more applications such as photosensing, photomedicine, and nonlinear optics. Here, the proton-controlled photophysics of a widely used acid, hydrazo dye, acid violet 3 (AV3) is explored. Density functional theory is used to predict the ground- and excited-state potential energy surfaces, and the proposed photoisomerization mechanism is confirmed with spectroscopic experiments. The ground-state and first two excited-state surfaces of the three readily accessible protonation states, AV3-H, AV3, and AV3+H, are investigated along both the dihedral rotation and inversion coordinates. The deprotonated AV3-H undergoes photoisomerization with blue light (λex = 453 nm) through a dihedral rotation mechanism. Upon the formation of the cis-isomer, the reversion of AV3-H is predicted to occur through a mixed rotational and inversion mechanism. In contrast, AV3 and its protonated form, AV3+H, do not undergo photoisomerization because there is no driving force for either the rotation or inversion of the azo bond in the excited state. In addition, when the azo bond is acidic, the ground-state dihedral rotation reversion mechanism barrier is lower. The mechanistic insights gained here through the combination of theory and experiment provide a roadmap to control the reactivity of AV3 across 11 orders of magnitude of proton concentration, making them interesting candidates for a range of pharmaceuticals.

4.
Phys Chem Chem Phys ; 25(22): 15302-15313, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222191

RESUMO

In this work we untangle the ultrafast deactivation of high-energy excited states in four naphthalene-based azo dyes. Through systematic photophysical and computational study, we observed a structure-property relationship in which increasing the electron donating strength of the substituent leads to longer lived excited states in these organic dyes and faster thermal reversion from the cis to trans configuration. In particular, azo dyes 1-3 containing less electron donating substituents show three distinct excited-state lifetimes of ∼0.7-1.5 ps, ∼3-4 ps, and 20-40 ps whereas the most electron donating dimethyl amino substituted azo 4 shows excited-state lifetimes of 0.7 ps, 4.8 ps, 17.8 ps and 40 ps. While bulk photoisomerization of all four moieties is rapid, the cis to trans reversion lifetimes vary by a factor of 30 with τreversion decreasing from 276 min to 8 min with increasing electron donating strength of the substituent. In order to rationalize this change in photophysical behavior, we explored the excited-state potential energy surfaces and spin-orbit coupling constants for azo 1-4 through density functional theory. The increase in excited-state lifetime for 4 can be attributed to geometric and electronic degrees of freedom of the lowest energy singlet excited-state potential energy surface.

5.
Phys Chem Chem Phys ; 25(3): 2179-2189, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594369

RESUMO

Pd(II) biladienes have been developed over the last five years as non-aromatic oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp3-hybridized meso-carbon (i.e., the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation (λexc ∼ 350-500 nm) led to an additional lifetime (i.e., an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states (λexc = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 µs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.

6.
Inorg Chem ; 60(20): 15797-15807, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34597507

RESUMO

A set of Pd(II) biladiene complexes bearing different combinations of methyl- and phenyl-substituents on the sp3-hybridized meso-carbon (the 10-position of the biladiene framework) was prepared and studied. In addition to a previously described Pd(II) biladiene complex bearing geminal dimethyl substituents a the 10-position (Pd[DMBil]), homologous Pd(II) biladienes bearing geminal methyl and phenyl substituents (Pd[MPBil1]) and geminal diphenyl groups(Pd[DPBil1]) were prepared and structurally characterized. Detailed electrochemical as well as steady-state and time-resolved spectroscopic experiments were undertaken to evaluate the influence of the substituents on the biladiene's tetrahedral meso-carbon. Although all three biladiene homologues are isostructural, Pd[MPBil1] and Pd[DPBil1] display more intense absorption profiles that shift slightly toward lower energies as geminal methyl groups are replaced by phenyl rings. All three biladiene homologues support a triplet photochemistry, and replacement of the geminal dimethyl substituents of Pd[DMBil1] (ΦΔ = 54%) with phenyl groups improves the ability of Pd[MPBil1] (ΦΔ = 76%) and Pd[DPBil1] (ΦΔ = 66%) to sensitize 1O2. Analysis of the excited-state dynamics of the Pd(II) biladienes by transient absorption spectroscopy shows that each complex supports a long-lived triplet excited-state (i.e., τ > 15 µs for each homologue) but that the ISC quantum yields (ΦT) varied as a function of biladiene substitution. The observed trend in ISC efficiency matches that for singlet oxygen sensitization quantum yields (ΦΔ) across the biladiene series considered in this work. The results of this study provide new insights to guide future development of biladiene based agents for PDT and other photochemical applications.

7.
Dalton Trans ; 50(21): 7265-7276, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33954322

RESUMO

Chemical intuition and well-known design principles can typically be used to create ligand environments in transition metal complexes to deliberately tune reactivity for desired applications. However, intelligent ligand design does not always result in the expected outcomes. Herein we report the synthesis and characterization of a tricarbonyl rhenium (2,2'-bipyridine) 4-pyridylamidine, Re(4-Pam), complex with unexpected photophysical properties. Photoluminescence kinetics of Re(4-Pam) undergoes non-exponential decay, which can be deconvolved into two emission lifetimes. However, upon protonation of the amidine functionality of the 4-pyridylamidine to form Re(4-PamH), a single exponential decay is observed. To understand and rationalize these experimental observations, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are employed. The symmetry or asymmetry of the protonated or deprotonated 4-pyridylamidine ligand, respectively, is the key factor in switching between one and two photoluminescence lifetimes. Specifically, rotation of the dihedral angle formed between the bipyridine and 4-Pam ligand leads to two rotamers of Re(4-Pam) with degenerate triplet- to ground-state transitions.

8.
ACS Appl Mater Interfaces ; 13(10): 11861-11868, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667064

RESUMO

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over the ZnS interlayer thickness on the ångström scale (0-1.5 nm) and to deposit highly pure Sb2S3. Our systematic study of the photovoltaic and optoelectronic properties of these devices by impedance spectroscopy and transient absorption concludes that the optimum ZnS interlayer thickness of 1.0 nm achieves the best balance between the beneficial effect of an increased recombination resistance at the interface and the deleterious barrier behavior of the wide-bandgap semiconductor ZnS. This optimization allows us to reach an overall power conversion efficiency of 5.09% in planar configuration.

9.
RSC Adv ; 10(25): 14804-14811, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497176

RESUMO

Herein, we report the thermodynamics, kinetics, and mechanism for electrochemical proton-coupled electron transfer involving the anthracene-based azo dye azo-OMe. The peak reduction potential of azo-OMe with organic acids spanning the pK a range of 2.6-23.51 shows a dependence upon the pK a of the acid when the acid pK a falls between 8 and 20 (in acetonitrile). A potential-pK a diagram is constructed and used to estimate the pK a of the azo-OMe species. Heterogeneous electron-transfer rate constants are obtained using rotating disk electrode voltammetry in combination with Koutecký-Levich and Tafel analysis. Electrochemical analysis shows that the reactions are diffusion limited and are kinetically controlled by the electron-transfer step. Kinetic isotope studies indicate a concerted proton, electron transfer event occurs in the pK a-dependent range when using trifluoroacetic acid.

10.
Chem Sci ; 11(37): 10212-10219, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34094286

RESUMO

Ambient-stable fluorescent radicals have recently emerged as promising luminescent materials; however, tailoring their properties has been difficult due to the limited photophysical understanding of open-shell organic systems. Here we report the experimental and computational analysis of a redox pair of π-conjugated fluorescent molecules that differ by one electron. A π-dication (DC) and π-radical cation (RC) demonstrate different absorption spectra, but similar red emission (λ emiss,max = ∼630 nm), excitation maxima (λ exc,max = ∼530 nm), fluorescence lifetimes (1-10 ns), and even excited-state (non-emissive) lifetimes when measured by transient absorption spectroscopy. Despite their experimental similarities, time-dependent density functional theory (TDDFT) studies reveal that DC and RC emission mechanisms are distinct and rely on different electronic transitions. Excited-state reorganization occurs by hole relaxation in singlet DC, while doublet RC undergoes a Jahn-Teller distortion by bending its π-backbone in order to facilitate spin-pairing between singly occupied molecular orbitals. This relationship between the excited-state dynamics of RC and its π-backbone geometry illustrates a potential strategy for developing π-conjugated radicals with new emission properties. Additionally, by comparing TDDFT and CIS (configuration interaction singles) excitations, we show that unrestricted TDDFT accurately reproduces experimental absorption spectra and provides an opportunity to examine the relaxed excited-state properties of large open-shell molecules like RC.

13.
J Phys Chem A ; 123(36): 7673-7682, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31483646

RESUMO

Excited states of tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)3]2+, can be deactivated by a wide range of ferrocene derivatives. The pathway by which deactivation takes place, either energy transfer (EnT) or electron transfer (ET), depends on several factors inherent to each specific donor-acceptor (D···A) system. In this work, we provide mechanistic insight into bimolecular quenching between [Ru(bpy)3]2+* and several ferrocene (Fc) derivatives in a variety of solvents. By introducing various functional groups onto the cyclopentadienyl ring of ferrocene, the chemical properties of the organometallic complexes were altered by tuning the oxidation potentials and charge of the iron complexes, and the manner in which the [Ru(bpy)3]2+ excited state is quenched by each ferrocene complex in solvents of various dielectric constants, including anhydrous acetonitrile (ACN), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and water (pH 10), was assessed. Through the use of transient absorption (TA) spectroscopy, the mechanism of [Ru(bpy)3]2+* quenching by each of five ferrocene derivatives (i.e., either EnT or ET) in the aforementioned solvents was evaluated. On the basis of these studies, electrostatic factors relating to the charge on the ferrocene moiety were found to influence the quenching pathway(s) for the [Ru(bpy)3]2+···Fc systems under interrogation. When the ferrocene moiety is positively charged, the [Ru(bpy)3]2+ excited state is quenched by EnT to Fc, while when the ferrocene moiety is neutral or negatively charged, the [Ru(bpy)3]2+ excited state is quenched via reductive ET.

14.
J Phys Chem A ; 123(35): 7558-7566, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31449416

RESUMO

A series of rubrene derivatives were synthesized and the influence of the side group in enhancing photo-oxidative stability was evaluated. Photo-oxidation half-lives were determined via UV-vis absorption spectroscopy, which revealed thiophene containing derivatives to be the most stable species. The electron affinity of the compounds did not correlate with stability as previously reported in literature. Our work shows that shorter excited-state lifetimes result in increased photo-oxidative stability in these rubrene derivatives. These results confirm that faster relaxation kinetics out-compete the formation of reactive oxygen species that ultimately degrade linear oligoacenes. This report highlights the importance of using molecular design to tune excited-state lifetimes in order to generate more stable oligoacenes.

15.
Chem Commun (Camb) ; 55(42): 5874-5877, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31045183

RESUMO

Herein, we report a new donor-acceptor system for photo-induced proton-coupled electron transfer (PCET) that leverages an azo linkage as the proton-sensitive component and anthracene as a photo-trigger. Electrochemistry shows a change in the reduction potential with addition of acid. However, photochemistry is invariant to the absence or presence of acid. The anthracene and phenol/4-methoxyphenyl moieties of the azo dyes are highly conjugated, likely mitigating photo-induced charge transfer, despite sufficient driving force.

16.
Dalton Trans ; 48(23): 8488-8501, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31116199

RESUMO

Three bodipy-based (BDP = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) donor-acceptor dyads were designed and synthesized, and their ground-state and photophysical properties were systematically characterized. The electronic coupling between the BDP chromophore and an electron-donating carbazole (Carb) moiety was tuned by attachment via the meso and the beta positions on the BDP core, and through the use of various chemical linkers (phenyl and alkynyl) to afford mesoBDP-Carb, mesoBDP-phen-Carb, and betaBDP-alk-Carb. meso-Substituted dyads were found to retain ground-state absorption features of the unsubstituted BDP. However, variation of the linkage between the donor and acceptor moieties modulated the photophysical behavior of excited-state deactivation by controlling the rate of photoinduced internal charge transfer (ICT). The beta-substituted dyad dramatically tuned (red shifted) the absorption spectrum, while retaining desired features of the BDP, specifically stability and high extinction coefficients, however the ICT kinetics were accelerated compared to the meso-substituted dyads. Density functional theory (DFT) and time-dependent DFT (TDDFT) were carried out on the six potential dyads formed between BDP and Carb (attachment using the beta and meso positions for all three connections: direct, phenyl and alkynyl) to support the experimental observations. DFT and TDDFT showed molecular orbital density spread across the HOMO level only when attachment occurred through the beta position of BDP. In the meso-substituted BDP-Carb dyads, the molecular orbitals resembled those of the unsubstituted BDP. This work reveals several possible synthetic paradigms to tune photophysical properties with directed synthetic modifications and provides a mechanistic understanding of the ground- and excited- state behavior in these small-molecule donor-acceptor dyads.

17.
J Phys Chem A ; 123(9): 1701-1709, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30608152

RESUMO

Carborane-containing poly(dihexylfluorene)s experience drastic solvatochromism in both the solution and solid states, a characteristic that is advantageous for use in environmental and biological sensing applications. Understanding the intrinsic decay mechanisms that give rise to such sensitive emission properties is important for designing responsive sensors. The solution-state photophysical properties of homopolymer, poly(9,9-dihexyl(bisfluorenyl)carborane) (PFCY), and alternating copolymer, poly(9,9-dihexyl-2,7-fluorene- alt-9,9-dihexyl(bisfluorenyl)carborane) (PFCS), were deciphered using steady-state, electrochemical, spectroelectrochemical, and time-resolved spectroscopic methods. From these techniques, it was discovered that following excitation the conjugated fluorene local excited state (LES) donates an electron to the carborane molecule, forming an intramolecular charge transfer (ICT) state between a radical cation on the fluorene moiety and a radical anion on the carborane moiety. From the global analysis of transient absorption data, it was discovered that the rate of electron transfer from the fluorene to the carborane is heavily influenced by solvent polarity and is significantly faster in more polar solvents. Once formed, the ICT state can decay through radiative or nonradiative mechanisms and is more likely to undergo radiative decay in nonpolar solvents, due to an intramolecular restriction of the polar ICT state. This study elucidates the effects that polarity has on the excited-state formation and subsequent decay mechanisms of fluorene-carborane systems, conclusively explaining the solvatochromism and steady-state emission properties exhibited by this system.

18.
Science ; 363(6424): 225-226, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30655427
19.
ACS Appl Energy Mater ; 2(12): 8747-8756, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894204

RESUMO

The combination of oxide and heavier chalcogenide layers in thin film photovoltaics suffers limitations associated with oxygen incorporation and sulfur deficiency in the chalcogenide layer or with a chemical incompatibility which results in dewetting issues and defect states at the interface. Here, we establish atomic layer deposition (ALD) as a tool to overcome these limitations. ALD allows one to obtain highly pure Sb2S3 light absorber layers, and we exploit this technique to generate an additional interfacial layer consisting of 1.5 nm ZnS. This ultrathin layer simultaneously resolves dewetting and passivates defect states at the interface. We demonstrate via transient absorption spectroscopy that interfacial electron recombination is one order of magnitude slower at the ZnS-engineered interface than hole recombination at the Sb2S3/P3HT interface. The comparison of solar cells with and without oxide incorporation in Sb2S3, with and without the ultrathin ZnS interlayer, and with systematically varied Sb2S3 thickness provides a complete picture of the physical processes at work in the devices.

20.
J Am Chem Soc ; 140(32): 10169-10178, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070469

RESUMO

The metal-to-ligand charge transfer excited states of [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) may be deactivated via energy transfer or electron transfer with ferrocene derivatives in aqueous conditions. Stern-Volmer quenching analysis revealed that the rate constant for [Ru(bpy)3]2+ excited-state quenching depends on solution pH when a ferrocenyl-amidinium derivative (Fc-am) containing a proton-responsive functionality tethered to the ferrocene center was present. By contrast, the rate constant with which the [Ru(bpy)3]2+ excited state is quenched by an analogous ferrocene derivative (ferrocenyl-trimethylammonium, Fc-mam) that lacks a protonic group does not depend on pH. These results show that the presence (or absence) of a readily transferrable proton modulates quenching rate constants in bimolecular events involving [Ru(bpy)3]2+ and ferrocene. More surprisingly, transient absorption spectroscopy reveals that the mechanism by which the [Ru(bpy)3]2+ excited state is quenched by Fc-am appears to be modulated by solution proton availability, switching from energy transfer at low pH when Fc-am is protonated, to electron transfer at high pH when Fc-am is deprotonated. The mechanistic switching that is observed for this system cannot be aptly explained using a simple driving force dependence argument, suggesting that more subtle factors dictate the pathway by which the [Ru(bpy)3]2+ excited state is deactivated by ferrocene in aqueous solutions.


Assuntos
Metalocenos/química , Compostos Organometálicos/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...